

order Flor

low

Pres

remp

Analyzer

r Lev

Datasheet
Ultrasonic Flow Meter
SIN-1158S

Sinomeasure

Committed to process automation solutions

Tel: 86-13336194863

E-mail: info@sinomeasure.com

www.sino-measure.com

Datasheet

Ultrasonic Flow Meter SUP-1158S

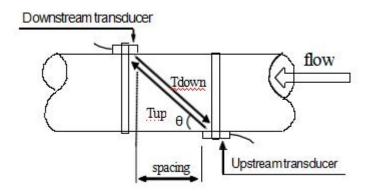
The wall-mounted ultrasonic flow meter is designed to measure the fluid velocity of liquid within a closed conduit. The transducers are a non-contacting, clamp- on type, which will provide benefits of non-fouling operation and easy installation.

The SIN-1158S wall-mounted ultrasonic flow meter can be applied to a wide range of pipe flow measurements. Applicable liquids include pure liquids as well as liquid with small quantity of tiny particles.

Applications

- Petrochemical
- Pharmaceutical
- Paper industry
- Metallurgy
- Electric power
- Environmental protection
- Food and beverage

Features


- Linearity: 0.5%.
- Repeatability: 0.2%.
- Accuracy:±1%.
- Easy to operate.
- Several type transducers for selection, measuring pipe size is from DN15mm to DN6000mm.
- Adopt low voltage, multi-pulse technology to improve accuracy, useful life and reliability.
- Powerful recording function, record the totalizer data of the last 64 days/64 monthes/5 years.

Ultrasonic Flow Meter

Principle

The wall-mounted ultrasonic flow meter utilizes two transducers that function as both ultrasonic transmitters and receivers. The transducers are clamped on the outside of a closed pipe at a specific distance from each other. The transducers can be mounted in V-method where the sound transverses the pipe twice, or W-method where the sound transverses the pipe four times, or in Z-method where the transducers are mounted on opposite sides of the pipe and the sound crosses the pipe once. This selection of the mounting method depends on pipe and liquid characteristics. The flow meter operates by alternately transmitting and receiving a frequency modulated burst of sound energy between the two transducers and measuring the transit time that it takes for sound to travel between the two transducers. The difference in the transit time measured is directly and exactly related to the velocity of the liquid in the pipe, show as follows:

$$V = \frac{MD}{\sin 29} \times \frac{\Delta T}{T_{up}.T_{down}}$$

Where:

 θ is the include angle to the flow direction

M is the travel times of the ultrasonic beam

D is the pipe diameter

Tup is the time for the beam from upstream transducer to the downstream one Tdown is the time for the beam from downstream transducer to the upstream one

ΔT=Tup -Tdown

Davamatava						
Parameters Items	Main parameters					
Accuracy	Better than ± 1%					
Repeatability	Better than 0.2%					
Principle Magazine and Barriad	Transit-time measuring principle 500ms					
Measurement Period						
Display	LCD with backlight, display accumulated flow/heat, instantaneous					
	flow/heat, velocity, time etc.					
	Analogue output: 4-20mA or 0-20mA current output					
Output	OCT output: Frequency signal (1~9999HZ)					
	Relay output: over 20 source signal (no signal, reverse flow etc.)					
	RS485 serial port					
Input	Three analogue input					
	Three-wire PT100 resistor input (optional)					
Other functions	Automatically record the totaliser data of the last 64 days / 64 months /					
	5 years; The newer on time and corresponding flow rate of the last 64 news on					
	The power-on time and corresponding flow rate of the last 64 powe on and off events.					
	Allow manual or automatic flow loss compensation.					
	The instrument working status of the last 64 days.					
	Steel, stainless steel, cast iron, cement pipe, copper, PVC, aluminum,					
Pipe material	FRP etc. Liner is allowed.					
Pipe size	15-6000mm					
i ipe size	In the upstream it must be beyond 10D, in the downstream it must be					
Straight pipe section	beyond 5D, in the upstream the length must be beyond 30D from the					
Straight pipe section	access of the pump. (D stands for pipe diameter)					
	Water, sea water, industrial sewage, acid & alkali liquid, alcohol beer,					
Liquid types	all kinds of oils which can transmit ultrasonic single uniform liquid					
Temperature	Standard: -30 °C - 90 °C; High-temperature: -30 ° C - 160 °C					
Liquid Turbidity	Less than 10000ppm, with a little bubble					
•						
Flow Direction Environment temperature	Bi-directional measuring, net flow/heat measuring Main Unit: -30 °C - 80 °C					
	Transducer: -40 C - 110 C, Temperature transducer: select on enquiry					
Humidity	Main Unit: 85% RH Transducer: water immercible, water depth loss than 3m					
Cablo	Transducer: water-immersible, water depth less than 3m					
Cable	Twisted Pair Line, standard length of 20m, can be extended to					

Sinomeasure

	00m (no recommended);					
	Contact the manufacturer for longer cable requirement;					
	RS-485 interface, transmission distance up to 1000m.					
Power supply	AC220V or DC24V					
Power Consumption	Less than 1.5W					
Protocols	MODBUS, M-BUS, Fuji extended protocol and other factory protocol					

PT100 temperature transducer 3 way analog input Upstream AC Power Shelding Cable

Figure 1 wiring diagram of ultrasonic flow meter

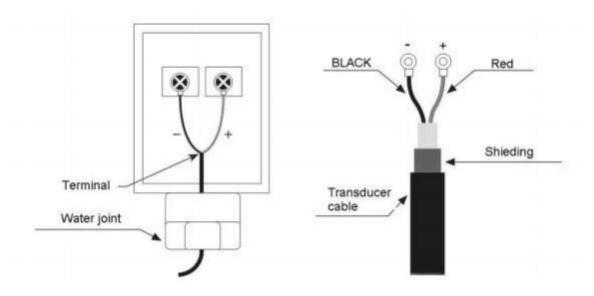


Figure 2 wiring diagram of transducer

Ordering Code

SIN-1158S-ST1-I	DNXX-J6-	MT0-	-T1-V1-	PQ0	-CS5					
1158S -	-	-		-	-	-	-	-	-	 Description -
ST	1									Standard small external clamp type (DN15-DN100)
ST	72									Standard medium-sized external clamp type (DN50-DN700)
ST	-3									Standard large external clamp type (DN300-DN6000)
ST	⁻ 4									High temperature small external clamp type (DN15-DN100)
Sensor type ST	⁻ 5									High temperature medium-sized external clamp type (DN50-DN700)
ST	⁻ 6									High temperature large external clamp type (DN300-DN6000)
ST	7									Insert standard type (DN50-DN6000)
ST	-8									Insert extension type (DN50-DN6000)
ST	9									Insert parallel type (DN80-DN6000)
ST	10									Standard pipe section (DN15-DN1200)
										Standard / high-temperature clamp-on sensor range: DN15-DN6000
Nominal diamete	r DNXX									Plug-in/parallel sensor range: DN50-DN6000 Pipeline sensor range:
										DN15-DN1200
Accuracy	,	J6								1.0%
Ctoross	tuno	1	MT0							No storage
Storage :	type	ı	MT1							SD card storage
			T1							-30° C-90° C (Standard
Temperatur	e resistan	ce	1 1							outer clamp only)
Tomporatur		50	T2							-30℃-160℃
										(Only high-temperature

Sinomeasure

			external clamp/insert type/pipe type)
Power supply	V1		24VDC
	V2		220VAC
	PQ0		No material (non-segmented)
	PQ1		Carbon steel (segment only)
Pipe material	PQ2		304 stainless steel (pipe section only)
	PQ3		316 stainless steel (pipe type only)
	CS	5	5m * 2 (standard)
Cable length	CS	10	10m * 2